
Towards Virtual Traits in Scala

Manuel Weiel Ingo Maier Sebastian Erdweg Michael Eichberg Mira Mezini
TU Darmstadt, Germany

ABSTRACT
Scala is a powerful language that supports a variety of fea-
tures, but it lacks virtual traits. Virtual traits are class-
valued object attributes and can be redefined within sub-
traits. They support higher-order hierarchies and family
polymorphism. This work introduces virtual traits into Scala
and explains how to encode virtual traits on top of existing
Scala features. We have implemented this encoding using
Scala annotation macros and have conducted two small case
studies.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Inheritance,
Polymorphism, Classes and objects

Keywords
virtual traits, virtual classes, family polymorphism, macros

1. INTRODUCTION
Traits in Scala can be defined as members of other traits.

This allows for powerful abstraction mechanisms as described
by Odersky and Zenger [1]. In this work, we will call the
member traits of an outer trait a family of traits. By ex-
tending the outer trait, we can add new traits to the family
(or shadow existing traits). It is, however, impossible to re-
fine existing inner traits in order to add new functionality
to the trait and its subtraits. In this paper, we present our
work towards support for this to Scala in the form of virtual
traits. A trait that is virtual can be refined by overriding
it in a subtrait of its outer family trait, which affects not
only the inner trait itself but potentially others in the same
family (or subfamily) as well.

To motivate virtual traits, let us consider the expression
problem [2]. Given a trait hierarchy for arithmetic expres-
sions, we want to be able to independently extend the hier-
archy with new data variants and new operations. First, we
define an expression model with constants and addition:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
Scala ’14, July 28–29, 2014, Uppsala, Sweden
Copyright 2014 ACM 978-1-4503-2868-5 ...$15.00.
http://dx.doi.org/10.1145/2637647.2637654

@family trait ExprModel {
@virtual abstract trait Expr
@virtual trait Constant(val value: Int) extends Expr
@virtual trait Add(val l: Expr, val r: Expr) extends Expr
val zero: Constant = Constant(0) // example expr

}

Trait ExprModel represents the family of expressions, which
is a simple trait hierarchy in this case. We annotate a fam-
ily of virtual traits with the annotation @family. The mode
comprises three traits that are virtual (as denoted by an-
notation @virtual): the abstract base trait Expr, a trait for
constant Int values, and a trait for addition. We can ex-
tend this expression model with new operations and with
new types of expressions as follows. In order to extend our
expression model with a variant for multiplication, we can
write:

@family trait ExprMult extends ExprModel {
@virtual trait Mult(val l: Expr, val r: Expr) extends Expr

}

In this example, we simply add another subtrait Mult of Expr.
This is already possible with standard (non-virtual) traits.
Besides the additional annotations, the only difference is
that virtual traits can have constructor parameters, even
though they are not strictly necessary here but helpful to
keep the example concise.

The interesting task is to extend a trait family with a new
operation. The following code shows how to add an eval

operation to the original expression model:

@family trait ExprEval extends ExprModel {
@virtual override abstract trait Expr { def eval: Int }
@virtual override trait Constant { def eval = value }
@virtual override trait Add { def eval = l.eval + r.eval }

}

We override the abstract virtual trait Expr with a refined
implementation that adds an abstract method eval. The in-
heritance relation between the virtual traits is inherited from
the parent family, so it does not have to be repeated. Also
we see that l and r in Add already know that Expr introduces
eval even though Add does not repeat the constructor pa-
rameters. The trait Expr has to be explicitly abstract, as the
abstract method eval prohibits instantiation. We also over-
ride the two subtraits with versions that implement method
eval.

We can instantiate and evaluate a simple expression as
follows:

val model = ExprEval()
model.Add(model.Constant(17), model.zero).eval // yields 17

67

Virtual traits allow multiple families to be mixed together
to support the features of all parent families. The mixing
is type-safe, that is, the Scala type system guarantees that
the mixed family features all virtual traits with all opera-
tions of all parent families. The type check will run after
our proposed transformation and we do not need to pro-
vide own type checking for virtual traits. In nested virtual
traits this mixin has to cascade into all nested virtual traits.
This is called deep mixin composition. It is a crucial feature
of virtual traits. We can use this feature to compose our
extensions for multiplication and evaluation:

@family trait ExprMultEval
extends ExprMult with ExprEval {

@virtual override trait Mult { def eval = l.eval * r.eval }
}

The family ExprMultEval extends both ExprMult and ExprEval.
Accordingly, the family must feature a multiplication trait
(due to ExprMult) and every subtype of Expr in the family
must provide an eval method (due to ExprEval). To this end,
we refine the virtual trait Mult and add the required eval

method. The Scala type system would reject the family
ExprMultEval if we did not refine Mult and add an eval method.
We can use the mixed family like the ExprEval family above:

val model = ExprMultEval()
import model._
Mult(Constant(7), Add(Constant(3), zero)).eval // yields 21

Families of virtual traits always inherit the inheritance re-
lation of the parent families, which enables safe and indepen-
dent adding of features to an existing hierarchy. Therefore,
virtual traits are an effective way to achieve feature-oriented
programming [3].

Virtual traits build on virtual classes, for which a formal-
ization of the dynamic and static semantics and a soundness
proof exist [4]. Our longterm goal is to add support for vir-
tual traits to Scala, based on the formalization in [4]. In
this work, we present steps towards this goal. Specifically,
we present the following contributions:

• We describe an encoding of virtual traits in terms of
existing Scala features: abstract type members, mixin
composition and self type annotations.

• We present a system of annotation macros [5] that au-
tomatically rewrites annotated virtual trait families as
in the above examples to valid Scala code using our
encoding.

• We discuss design decisions and interactions of virtual
traits with Scala’s trait linearization and type system.

2. TRANSFORMATION
We describe a way to add virtual trait support to Scala

using an encoding on top of existing Scala features. Nested
traits allow mixin composition but do not provide the ability
to override the implementation of a nested trait and refine
the implementation. Virtual traits as well as families con-
taining virtual traits therefore transform to a combination
of nested traits, virtual types and factories. The factories
achieve late binding and family inheritance by statically an-
alyzing the code and determine the right traits that need to
be mixed into the class linearization. In the following sec-
tions we describe the different steps in the transformation
and present why these steps are needed to achieve virtual
trait support in Scala.

Feature Transformation

virtual trait • introduce a class for final type bindings
family • factory to instantiate a family
virtual trait • trait gets renamed

• abstract type with same name and upper
bound of the linearization of the virtual
trait
• concrete type with upper bound of the
trait in final binding class
• abstract factory method to instantiate
the virtual trait
• class in final binding class that extends
the linearization of the trait
• factory method in the final class to call
final binding class

constructor • adds the parameters as val with the
parameters default value to the trait

• adds the parameters to the factory
method
• adds the parameters to the final binding
class

outer calls • adds a self type to each virtual trait and
family with different names
• adds a method called outer in each vir-
tual trait that is set to the enclosing self
type

Table 1: Transformations

2.1 Recipe
Table 1 shows the main aspects of transforming virtual

traits and other related elements are to Scala code. In the
following paragraphs we show why these transformations are
necessary.

Virtual trait families.
Virtual trait families are annotated with @family. A vir-

tual trait family may not have constructor parameters. The
body of the virtual trait family is kept unchanged unless
other rules for transforming apply (e.g. a virtual trait is en-
countered). Additionally we add a concrete class that ex-
tends this trait. This class is necessary to bind the final
types to the inner virtual traits, as these may change if a
virtual trait family is extended. Therefore we call this class
the final binding class. A factory is added to instantiate vir-
tual trait families. It creates an instance of the final binding
class. The factory method is called inside the apply method
of the companion object of the family.

Virtual traits.
Virtual traits are annotated with @virtual and transform

into multiple parts. The trait itself contains only partial
information about the final type of the virtual trait so the
typing information has to be represented as a virtual type.
This virtual type will be used inside the code to identify the
type of the virtual trait. To avoid name collisions we rename
the trait that is annotated with @virtual. This allows us to
refer to every virtual trait in every family using a unique
name. This is needed in building the linearizations in all
families. Parents of virtual traits can be other virtual traits
as well as normal traits. The parents of the virtual trait
have to be modified as well. The linearization of this virtual

68

trait replaces its parents. Subsection 2.7 will describe in
detail how we determine the linearization. The parents of
the virtual trait may contain other virtual traits and the
name of these virtual trait is bound to the abstract type
after the linearization. As abstract types cannot be used
as base classes or mixins, the concrete class that mixes all
necessary virtual traits together has to search for all needed
virtual traits and cannot rely on the defined abstract traits.
The trait also defines an explicit self type whose type is set
to the newly introduced virtual type. This is needed as the
linearization of a virtual trait may change in subfamilies.
The upper bound of the virtual type is determined by the
linearization of the parent traits. The lower bound is always
Null.

Finally we introduce a factory method which is used to
instantiate virtual traits. This factory method is abstract
as we do not know the final type and the linearization.

Inside of the final class, the abstract type and the abstract
factory method are bound to concrete values. The abstract
type is bound to the linearization of this virtual trait. The
factory method instantiates a class which is created only for
the purpose of instantiating virtual traits. The final class
therefore establishes the actual type binding for each virtual
trait.

As the family itself can be extended, we need the type
binding in the final class to have the type of the virtual trait
be dependent on the type of the object of its enclosing class.

Constructor parameters.
Virtual traits support constructor parameters, but nor-

mal traits do not, so constructor parameters have to receive
special treatment. Each constructor parameter adds an ab-
stract val declaration to the trait (val name: Type;). Also the
list of parameters is added to the method signature of the
factory method. Finally these constructor parameters are
added to the class that is introduced in the final class and
this class overrides the vals in the trait.

outer calls.
To achieve calls to the instance of the enclosing family,

the outer keyword is introduced. We implement the outer

keyword by adding a method with the name outer to each
virtual trait. This method is then bound to the self type of
the enclosing class or trait. Therefore the self type has to
be added to each virtual trait and family. As nested virtual
traits are not covered in this paper we can simplify this by
just inserting a self type annotation to the family which is
called outer.

2.2 Families
To detail the transformation we apply the transformation

to small examples.
Allowing late binding of virtual traits inside families re-

quires one to split a family into an abstract part and a con-
crete implementation that is dependent on the actual family
and thus any possible subfamily. Therefore a family has to
be transformed into an abstract trait and a concrete imple-
mentation of that trait.

1 @family trait ExprModel {
2 @virtual trait Expr
3 }

Line 1 defines a family which contains a virtual trait (Line

2). We transform this example as follows:

1 trait ExprModel extends AnyRef { outer =>
2 @virtual trait Expr
3 ...
4 }
5
6 class VC_FINAL$ExprModel extends ExprModel {
7 ...
8 }
9

10 object ExprModel {
11 def apply() = new VC_FINAL$ExprModel()
12 }

As seen in Line 1 and Line 6, we split the implementation
of a family into two parts. The first part is an abstract
trait (Line 1) which contains the body of the family. The
second part is an additional class (Line 6) which extends this
abstract trait. The name of this class starts with VC_FINAL.
This class is used to facilitate late binding and allow the
type of the virtual traits to be bound to the containing class’
object. Late binding is achieved as instances of families are
always created using the companion object’s apply method.
Therefore the VC_FINAL class is instantiated which binds
the abstract types to concrete values. Even if the instance
of the family is cast to a super family type, the instantiation
of virtual traits is still managed by the VC_FINAL class. The
virtual trait Expr in Line 2 has to be transformed as well, so
this transformation is described in the following section.

2.3 Virtual traits
In the last subsection we showed that it is necessary to

split families into two parts, an abstract and a concrete im-
plementation part. Virtual traits have to be split as well.
The way this is done is more complex for virtual traits
though. Therefore transforming virtual traits includes some
other steps to allow late binding and to have the right lin-
earization order.

We once again look at a simple example of a family with
one virtual trait. To clarify which part of the transformation
contains the body of the virtual trait, we add a method
declaration inside the virtual trait Expr:

1 @family trait ExprModel {
2 @virtual trait Expr {
3 def something: Int = 0
4 }
5 }

1 trait ExprModel extends AnyRef { outer =>
2 type Expr >: Null <: AnyRef with

VC_TRAIT$ExprModel$Expr
3 trait VC_TRAIT$ExprModel$Expr { self: Expr =>
4 def something: Int = 0
5 }
6 def Expr(): Expr
7 }
8 class VC_FINAL$ExprModel extends ExprModel {
9 def Expr() = new VC_FIX$ExprModel$Expr()

10 type Expr = AnyRef with VC_TRAIT$ExprModel$Expr
11 class VC_FIX$ExprModel$Expr extends

VC_TRAIT$ExprModel$Expr
12 }
13 ...

Listing 1: Simple virtual trait (transformed)

Listing 1 show that we transform even a simple virtual trait
into multiple parts resulting in a lot of boilerplate code. The

69

virtual trait transforms into a trait (Lines 3-5) with a self
type annotation as well as being renamed for an easy way
to refer to that special virtual trait implementation in later
linearizations.

Additionally to this trait, we define an abstract type with
the name of the virtual trait (Line 2). This type is used
when the type of a virtual trait is needed. It always has the
lower bound of Null. This is due to the fact that all virtual
traits are derived by AnyRef and therefore it should be valid
to instantiate them with null. The upper bound is defined
by the inheritance the virtual trait has defined. This ab-
stract type is overridden in the VC_FINAL part (Line 10) by
a concrete type that mixes in all necessary traits, which are
generated from the virtual traits. Because the type is still
abstract in Line 2, it is possible to redefine it in subfami-
lies. These subfamilies can then redefine the abstract type
to accommodate overridden virtual traits.

In addition to this type, a method with the same name
as the virtual trait is generated, which is used to instantiate
virtual traits. This factory method (Line 6) is also abstract
and gets defined in the VC_FINAL part (Line 9). In Line 11
we introduce a concrete class which can be used to create an
instance of this virtual trait. Its constructor is called by the
factory method (Line 9). This class only exists to mix the
right traits in and create an instance of a virtual trait. It is
generated in the VC_FINAL part because the actual mixed in
traits can vary in other families that subtype ExprModel.

Important to note is the self type annotation in Line 3.
It allows the self type to be dynamically refined later in the
VC_FINAL part of the enclosing family, because Expr is still
abstract at that time. This is needed to allow subfamilies to
refine the type of a virtual trait. By defining a self type to
the abstract type, we gain access to all inherited methods
from the base traits of the virtual trait even if those are
defined in subfamilies.

Abstract virtual traits are treated specially. Therefore,
the next subsection covers these aspects.

2.4 Abstract virtual traits
Normal traits are always abstract and can therefore not

have constructor parameters. As virtual traits are allowed
to be instantiated, boilerplate code for instantiation is cre-
ated. Therefore abstract virtual traits can omit large parts
of the generated code. The factory method for object cre-
ation has to be omitted. As we can not create a concrete
instance of an abstract virtual trait it is neither possible nor
intended to create instances of this virtual trait and there-
fore the factory method is not needed. Additionally it is not
necessary to generate the VC_FIX class, as it is only used for
object creation. Abstract virtual traits can still be mixed in
as described.

2.5 Inheritance of virtual traits
This section shows how virtual trait inheritance is han-

dled. The following example shows how inheritance inside
of a family is transformed:

1 @family trait ExprModel {
2 @virtual abstract trait Expr
3 @virtual trait Constant extends Expr {
4 var value: Int = 0
5 }
6 }

We see that Constant extends Expr (Line 3). This inheri-
tance is reflected in the generated traits and types:

1 abstract trait ExprModel extends AnyRef { outer =>
2 ...
3 type Constant >: Null <: AnyRef with Expr with

VC_TRAIT$ExprModel$Constant
4 abstract trait VC_TRAIT$ExprModel$Constant extends

VC_TRAIT$ExprModel$Expr { self: Constant =>
5 var value: Int = 0
6 }
7 def Constant(): Constant
8 }
9 class VC_FINAL$ExprModel extends ExprModel {

10 ...
11 type Constant = AnyRef with Expr with

VC_TRAIT$ExprModel$Constant
12 class VC_FIX$ExprModel$Constant extends

VC_TRAIT$ExprModel$Expr with
VC_TRAIT$ExprModel$Constant

13 def Constant() = new VC_FIX$ExprModel$Constant()
14 }

Listing 2: Virtual trait inheritance (transformed)

The most important changes in Listing 2 compared to the
example in Listing 1 are in Lines 3, 11 and 12. Here, we mix
the inherited virtual trait Expr in. We first define the upper
bound of the abstract type as all extended traits and after
that mix in the own trait as before.

In Line 12 it is not possible to write the linearization ex-
actly as in Line 3 and 11, because types cannot be extended
or mixed in. So all traits from the complete hierarchy have
to be mixed in explicitly. Therefore both VC_TRAITs are
mixed in.

Because type Constant has Expr as upper bound and the
self type is of type Constant, the trait can access all mem-
bers of VC_TRAIT$ExprModel$Expr. So the desired behavior
is achieved without losing the functionality of late binding.

2.6 Family inheritance
It should not only be possible that virtual traits can have

an inheritance relation, but also trait families should have
the ability to inherit from other families. We handle virtual
traits specially in the linearization that are already defined
in a parent virtual trait family and should be refined. We
show a basic example of family inheritance with the follow-
ing example:

@family trait ExprEval extends ExprModel {
@virtual override abstract trait Expr {
def eval: Int

}
@virtual override trait Add {
def eval: Int = l.eval + r.eval

}
}

When a trait family extends another one, it has to re-
peat all concrete type bindings from its super virtual trait
families. The VC_FINAL class also has to repeat the VC_FIX

class which mixes the traits together and refines the factory
method.

1 trait ExprEval extends ExprModel { outer =>
2 type Expr >: Null <: AnyRef with

VC_TRAIT$ExprModel$Expr with
VC_TRAIT$ExprEval$Expr

3 trait VC_TRAIT$ExprEval$Expr extends
VC_TRAIT$ExprModel$Expr { self: Expr =>

70

4 def eval: Int
5 }
6 ...
7 type Add >: Null <: AnyRef with BinExpr with

VC_TRAIT$ExprModel$Add with
VC_TRAIT$ExprEval$Add

8 trait VC_TRAIT$ExprEval$Add extends
VC_TRAIT$ExprModel$Expr with
VC_TRAIT$ExprEval$Expr with
VC_TRAIT$ExprModel$BinExpr with
VC_TRAIT$ExprModel$Add { self: Add =>

9 def eval: Int = l.eval + r.eval
10 }
11 ...
12 }
13 object ExprEval extends AnyRef {
14 class VC_FINAL$ExprEval extends ExprEval {
15 type Expr = AnyRef with VC_TRAIT$ExprModel$Expr with

VC_TRAIT$ExprEval$Expr;
16 ...
17 def Add() = new VC_FIX$ExprEval$Add();
18 type VirtualB = AnyRef with BinExpr with

VC_TRAIT$ExprModel$Add with
VC_TRAIT$ExprEval$Add;

19 class VC_FIX$ExprEval$Add extends
VC_TRAIT$ExprModel$Expr with
VC_TRAIT$ExprEval$Expr with
VC_TRAIT$ExprModel$BinExpr with
VC_TRAIT$ExprModel$Add with
VC_TRAIT$ExprEval$Add

20 }
21 def apply() = new VC_FINAL$ExprEval()
22 }

Listing 3: Family inheritance (transformed)

In Line 18 and 19 we can see that the linearization also
includes traits from the parent families. These are mixed in
first, as the traits from the current family have precedence.

2.7 Linearization
The desired trait linearization follows the rules of the Scala

class linearization described in [6]. In addition to the base
classes in the current family, the defined base classes and
traits in the base families have to be included in the lin-
earization. The base classes of the trait gain precedence
over the inherited linearization of its families.

In the family ExprMultEval that was shown in the introduc-
tion the class Mult would have the following linearization:

Mult, Expr

The mixin traits for this linearization are:

VC_TRAIT$ExprModel$Expr,
VC_TRAIT$ExprEval$Expr,
VC_TRAIT$ExprModel$Mult,
VC_TRAIT$ExprMult$Mult,
VC_TRAIT$ExprEval$Mult,
VC_TRAIT$ExprMultEval$Mult

2.8 Constructor parameters
As traits do not support constructor parameters per de-

fault, constructor parameters of the virtual traits are added
to the generated factory method. This is done by adding the
constructor parameters with the same type signature to the
factory method. So it is still possible to instantiate virtual
traits with constructor parameters.

Rewriting the virtual trait Constant to use a constructor
parameter results in:

@family trait ExprModel {
@virtual trait Constant(val value: Int)

}

Transforming this example results in the code seen in List-
ing 4.

1 abstract trait ExprModel extends AnyRef { outer =>
2 abstract trait VC_TRAIT$ExprModel$Constant extends

VC_TRAIT$ExprModel$Expr { self: Constant =>
3 val value: Int;
4 }
5 def Constant(value: Int): Constant
6 }
7 class VC_FINAL$ExprModel extends ExprModel {
8 def Constant(value: Int) = new

VC_FIX$ExprModel$Constant(value)
9 class VC_FIX$ExprModel$Constant(val value: Int) extends

VC_TRAIT$ExprModel$Expr with
VC_TRAIT$ExprModel$Constant

10 }

Listing 4: Virtual trait with constructor parameter
(transformed)

As seen in Lines 5 and 8, we introduce the constructor
parameters in both the abstract and the concrete factory
method. This ensures that instantiating the virtual trait
needs constructor parameters. The constructor parameters
are then passed along to the VC_FIX class (Line 9) which is
a concrete class and therefore can have constructor param-
eters. The immutable variable value in Line 3 is defined by
the constructor parameter of the VC_FIX class in Line 9 and
thus giving value the correct value.

This is only a partial solution though, as it prohibits pass-
ing constructor parameters to virtual base traits.

Passing constructor parameters to virtual base traits.
When we pass constructor parameters to virtual base traits

the transformation changes to accommodate the fact that
the scope of the current virtual trait has to be visible. So
we mix in another trait which binds the parameter of the
current virtual trait to the parameter of the parent virtual
trait.

The following example passes a constructor parameter to
its base trait:

1 @family trait ExprModel {
2 @virtual trait Constant(val value: Int) extends Expr
3 @virtual trait Squared(val toBeSquared: Int) extends

Constant(square(toBeSquared)) {
4 def square(x: Int) = x * x
5 }
6 }

In Line 3 we pass the constructor parameter toBeSquared to
a method square which is defined in the body of the same
virtual trait (Line 4). Therefore it is necessary to introduce
another trait which we mix in, to make it possible that the
constructor parameter can use functions declared in the vir-
tual class (see Line 7 of Listing 5). This trait has the same
self type as the VC_TRAIT. This allows to see all introduced
members.

1 abstract trait ExprModel extends AnyRef { outer =>
2 ...
3 def Squared(toBeSquared: Int): Squared
4 type Squared >: Null <: AnyRef with Constant with

VC_CONS$ExprModel$Squared with
VC_TRAIT$ExprModel$Squared

71

5 trait VC_TRAIT$ExprModel$Squared extends
VC_TRAIT$ExprModel$Expr with
VC_TRAIT$ExprModel$Constant { self: Squared =>

6 }
7 trait VC_CONS$ExprModel$Squared { self: Squared =>
8 val toBeSquared: Int
9 val value: Int = square(toBeSquared)

10 }
11 }
12 class VC_FINAL$ExprModel extends ExprModel {
13 ...
14 def Squared(toBeSquared: Int) = new

VC_FIX$ExprModel$Squared(toBeSquared)
15 type Squared = AnyRef with Constant with

VC_TRAIT$ExprModel$Squared
16 class VC_FIX$ExprModel$Squared(_toBeSquared: Int)

extends { val toBeSquared = _toBeSquared } with
VC_CONS$ExprModel$Squared with
VC_TRAIT$ExprModel$Expr with
VC_TRAIT$ExprModel$Constant with
VC_TRAIT$ExprModel$Squared

17 }

Listing 5: Virtual class with constructor parameter
passed to base trait (transformed)

The factory method in Line 3 takes the new parameter
as an argument. The virtual class transformation itself does
not change, but another trait that starts with VC_CONS is
added (Line 7). This trait manages the assignment of the
passed constructor parameter to the base class. As it has the
self type Squared, it can see all members that are declared
in the virtual class. We then mix this trait into the VC_FIX

class in Line 16. To prevent name clashes, we rename the
constructor parameter of the VC_FIX class.

2.9 Summary
We showed that virtual traits can be transformed to a

combination of nested traits, virtual types and factory meth-
ods. The transformation takes into account that virtual
traits are late-bound and and offer family polymorphism.

The presented encoding can be automated, so we intro-
duce an implementation using annotation macros that per-
forms this transformation.

3. TECHNICAL REALIZATION
We implemented a prototype of virtual traits in Scala.

This implementation includes the transformation of virtual
trait families, virtual traits and constructor parameters. It
does not support nested virtual traits and passing of con-
structor parameters to base classes.

The implementation uses annotation macros which are
a part of macro paradise. Macro paradise includes macro
features that are not (yet) included in the Scala compiler.
Macro paradise is developed as a compiler plugin and can
insert and modify compiler phases. Annotation macros are
macros that are bound to static annotations. Listing 6 shows
in Line 2 how a macro transformation can be invoked in an
annotation. During the compile run macro paradise will in-
voke a separate compile run for each annotation macro and
pass the AST of the annottee to the macro implementation.
The annotation macro can then modify the abstract syntax
tree of the annotated member and return this for further
processing in the compiler. An important fact is that this
expansion happens before the typer has run. This allows a
very flexible and powerful manipulation of the AST. Anno-

1 class family extends StaticAnnotation {
2 def macroTransform(annottees: Any*) = macro family.impl
3 }
4
5 object family {
6 def impl(c: Context)(annottees: c.Expr[Any]*):
7 c.Expr[Any] = {
8 ...
9 val result: c.Tree = {

10 annottees.map(_.tree).toList match {
11 case (cd @ ClassDef(mods, name, tparams,
12 Template(parents, self, body))) :: rest =>
13 val classDef =
14 q"""abstract trait $name[..$tparams]
15 extends ..$parents { outer =>
16 ..${transformBody(body,name,parents)}
17 }"""
18 val newObjectDef =
19 q"""object ${name.toTermName} {
20 def apply() = new ${finalClassName(name)};
21 ${finalClass(name, body, parents)}
22 }"""
23
24 q"{ $classDef; $newObjectDef }"
25 }
26 }
27 c.Expr[Any](result)
28 }
29 }

Listing 6: Annotation macro implementation
(excerpt)

tation macros allow typing of members outside the annottee
in the separate compile run, though.

The transformation is implemented in the @family anno-
tation. We iterate over all members in the family body and
transform all virtual traits we find. The final class is also
added in this macro. Listing 6 shows that we pattern match
over the annottees (Line 10). If we encounter a class defini-
tion (Line 11-12) the transformation is applied (Lines 13-24).
The transformation is done mainly in two steps. First we
transform the body of the family and all included virtual
traits (Line 16). In the method transformBody virtual traits
are expanded into abstract types and factory methods. The
second step introduces the VC_FINAL class that establishes
the final type bindings. The body of the VC_FINAL class is
built in the method finalClass (Line 21). Finally we return
both the modified trait (classDef) and the newly introduced
companion object (newObjectDef) in Line 24. In contrast to
the proposed transformation, we embed the VC_FINAL class
inside of the companion object of the virtual trait family.
This is needed as an annotated trait or class can only ex-
pand into a trait or class with an optional companion object.

The implementation of transformBody and finalClass need to
have information about the linearization of its inner virtual
traits. It therefore has to determine the linearization as de-
scribed in section 2.7. For this it needs knowledge about the
parent families and their virtual traits. Annotation macros
only expose the AST of the annotated member, so the infor-
mation about the parent families cannot be obtained using
pattern matching on ASTs.

To determine the linearization of virtual traits we there-
fore use a combination of pattern matching on the own fam-
ily AST and reflection on the already expanded parent fam-

72

ilies. The class linearization of the parent families can be
determined by using reflection on all parents and combining
these using the Scala class linearization rules. The lineariza-
tion of a virtual trait can then be combined from the own de-
fined virtual trait parents and those parents that are found
using reflection in the linearization of the parent families.
This is done by accessing the upper bound of the abstract
types that are introduced for every virtual trait and there-
fore we can determine the linearization of the virtual trait
in this family. The linearization algorithm then merges the
obtained information into the complete linearization in the
current family. The class mixins can then be determined by
searching for instances of the VC_TRAIT in every family in
the family linearization.

We tested the implementation using two small case stud-
ies, one being an extended version of the expression model,
the other one is a program that emulates smart homes and
implements the sensors as virtual traits. So the actual im-
plementation can be mixed together from the different ex-
isting sensor families. Additionally, we ported test cases
from CaesarJ to verify correct behavior. As CaesarJ fea-
tures a slightly modified class linearization, the tests had to
be modified to accommodate the linearization presented in
this paper.

The implementation can be found at [7].

4. DISCUSSION
This paper shows the possibility to model virtual traits in

Scala by implementing them as annotation macros. The the-
oretical transformations cover most cases to have a correct
implementation of virtual traits with respect to the virtual
class calculus described by Ernst, Ostermann, and Cook [4].

Scala contains virtual types which does not cover poly-
morphic instantiation and virtual inheritance. This is added
by the transformation described in Section 2. Annotation
macros provide the flexibility to add these features to Scala
to provide virtual trait support.

However, the implementation and transformation have
some shortcomings.

4.1 Restrictions in the transformation
The transformation does not cover any type safety checks

with respect to virtual traits. Type safety is currently as-
sumed to be given by Scala’s typer. This can result in un-
clear error messages as well as undesired behavior. In future
work basic type checking on an earlier point can be added
to ensure type safety with respect to virtual traits.

This work does not cover extending virtual traits outside
of families. Currently this is prohibited by the use of ab-
stract types which traits cannot extend. To allow extending
of virtual traits outside of families additional research needs
to be done.

Currently the visibility modifiers are not honored in the
presented transformation. Annotating a member with e.g.
private[this] would currently result in being private with re-
spect to the generated trait and not necessarily with respect
to the virtual trait.

4.2 Restrictions in the implementation
The current implementation does not cover nested virtual

traits (e.g. it is not possible to introduce @virtual traits inside
another @virtual trait) so it is only possible to obtain one
nesting layer. Further work has to be done to show that

the transformation and implementation make it possible to
recursively nest virtual traits and achieve full deep mixin-
composition.

The proposed implementation uses the keyword class in-
stead of trait as traits are always marked abstract by the
parser and do not allow constructor parameters. As an-
notation macros run only after the parser phase there is
no easy and elegant way to use the keyword trait without
changing the compiler or removing constructor parameter
support. Directly modifying the compiler enables changes
to the parser to allow non-abstract traits and traits with
constructor parameters.

Reflection and pattern matching over ASTs.
As annotation macros do not provide full AST visibility

the use of reflection poses some issues with respect to de-
termining the virtual trait linearization. Many operations
have to be programmed in two different ways though they
obtain the same information. One implementation retrieves
the linearization in the own AST and another one uses the
reflection API. This makes code reuse difficult. The use of
reflection has advantages though. Typechecking the parent
family will ensure that the macro already expanded and that
the Scala type system accepts the expansion of the parent
family. This does not provide type safety for virtual traits,
but it rules out a variety of possible situations where un-
safe code could be generated in the own family. If there
are cyclic references, it is unfortunately possible to run into
endless loops, though.

4.3 Constructor parameters
Also the current approach to constructor parameters for

mixins is very limited. Scala traits do not support con-
structor parameters, because there is no guarantee that con-
structor parameters in mixins will be preserved in classes
with which a mixin can be combined. Other languages like
CaesarJ allow constructor parameters in mixins, but every
constructor is rewritten to a method that cannot be hidden.
Therefore subclasses can only override their implementation.

The problem with redefining constructor parameters con-
sists of the fact that constructors can be used in other virtual
traits of the base hierarchy. After changing the constructor
signature, these virtual traits of the base class that have to
use the new constructors due to late binding, do not know
what to pass to the changed constructors. This can be seen
in the following example:

1 @family trait ExprModel {
2 @virtual trait Constant(val test: Int)
3 @virtual trait Constants {
4 def zero: Constant = new Constant(0)
5 def one: Constant = new Constant(1)
6 }
7 }
8
9 trait ExprTest extends ExprModel {

10 @virtual override trait Constant(val testString: String)
11 }

Listing 7: Constructor refinement example

Listing 7 shows two fundamental issues. The first prob-
lem is that in trait Constants an instance of trait Constant is
created (Line 4 and 5). As long as the constructor signature
does not change, it is statically known that one parameter
of type Int is expected. By overriding the constructor in

73

ExprTest (Line 10) this is not given anymore. As Constants is
not changed, it does not know how to instantiate Constant

anymore. The second problem is that with the name change
of the parameter the member test is not available anymore so
each call to it fails. So this cannot be allowed either. These
issues could be circumvented by only allowing to add new
constructor parameters in new families. Moreover all new
constructor parameters would need a default value.

Constructor parameter support is therefore hard to achieve
without breaking type safety. Scala takes the approach
to disallow constructor parameters for mixins completely,
which is the easiest approach, but limits the use of virtual
traits. Constructors are different from methods, which are
preserved in subclasses with their signature. This does not
hold for constructors. Constructors in subclasses are not
inherited and may therefore be defined completely differ-
ent. This poses a problem for mixins. CaesarJ takes the
approach of exposing constructors as methods which cannot
be hidden in subclasses. It is only possible to override it.
This has the disadvantage that constructors become meth-
ods that can even be called after the object has already been
created. It remains as future work to find a solution to the
constructor problem that allows mixins, but still maintain
type safety.

4.4 Linearization
When rewriting virtual traits, our encoding adds a sec-

ond axis of inheritance. Besides the ”vertical” inheritance
relationship that is explicit coded between traits in a virtual
trait hierarchy, it adds an implicit ”horizontal” inheritance
relationship between an overriding virtual trait and the trait
it overrides. These two axes are then collapsed into one us-
ing a specific order so that our macros can create valid Scala
trait definitions. There are essentially two sensible orderings
to choose from. Either an overriding trait first extends traits
from the vertical axis and then from the horizontal or vice
versa. For example, for a family A of virtual traits T and S,
where S extends T and a subfamily B that overrides both T

and S, we can either let B.S extend A.S with B.T or B.T with
A.S.

We chose the second order for the following reason. Scala
maintains the invariant that for any traits C and D, if D is
a subtrait of C it comes before C in any class linearization
in which C and D occur. By chosing the second order, we
maintain a straightforward extension of this invariant: if D is
a subtrait of C it comes before C and any trait that overrides
C in any class linearization in which C and D occur.

4.5 Code size
For every virtual trait we generate an abstract type, a

factory method and a class that is needed for instantiation.
So we expect a linear overhead compared to regular traits.
However, future work will focus on evaluating the impact of
virtual traits on the size of the codebase.

5. RELATED WORK
Virtual traits presented in this paper are based on the

virtual class calculus by Ernst, Ostermann, and Cook in [4].
First, virtual classes were introduced in BETA, but got doc-
umented only several years later in [8]. Later languages like
gbeta and CaesarJ extended the model that was introduced
by BETA.

5.1 BETA
BETA is a programming language that is purely object

oriented. It introduces nested classes and also unified classes
and procedures into patterns [9]. Patterns unify classes,
procedures, functions, coroutines, processes and exceptions.
Subpattern are like nested classes in other programming
languages. BETA introduces patterns which abstract over
classes, coroutines, concurrent processes and exceptions. Be-
cause patterns can be virtual, it is not only possible to have
virtual classes but also all of the above mentioned features
can all be virtual.

BETA itself is block structured so patterns can be textu-
ally nested [9]. However, it does not support deep mixin-
composition.

5.2 gbeta
gbeta [10] is a statically typed programming language

originating in BETA. In contrast to BETA it supports a fully
general version of family polymorphism and can propagate
combinations of classes and methods and thus supporting
deep mixin composition.

Virtual classes in gbeta are realized by introducing open
placeholders which are declared as a feature of its enclosing
object “and it may be refined (to a subclass) in a subclass of
the enclosing class. [...] gbeta supports a very general no-
tion of virtual classes where a refinement declaration (tradi-
tionally known as a further-binding of the virtual class) may
refine that class by means of a mixin-based combination pro-
cess that recursively propagates into the block structure.”
[10].

5.3 CaesarJ
CaesarJ [11] takes virtual classes and brings them to a

Java based programming language. It allows better mod-
ularity and reusability of components. CaesarJ itself does
not only include virtual classes but also introduces aspect
oriented features to enable further modularity by extracting
features into aspects.

CaesarJ declares both virtual classes and class families
with the keyword cclass in contrast to conventional Java
classes which still carry the keyword class. Nested cclasses au-
tomatically are virtual classes. Neither can Java classes re-
side inside cclasses, nor can cclasses reside inside Java classes.
CaesarJ classes can be nested an unlimited number of times.
CaesarJ introduces the keyword outer to reference the enclos-
ing class.

CaesarJ classes can be declared as a specialization of any
number of CaesarJ classes. This is done by using the extends

keyword and the different classes are separated by the mixin
operator & [12]. Also if a class family defines a nested virtual
class which already exists in the context of the collaboration,
this virtual class is overridden. This is called a refinement
or a further-binding. In contrast to the proposed solution
for Scala it is not necessary to specify that the class is an
overridden class using any keyword.

CaesarJ class families are not allowed to have constructor
parameters and all constructors of parent families are called
during the instantiation of a CaesarJ class family. CaesarJ
nested classes are instantiated by calling the constructor us-
ing the new keyword on the class family.

74

5.4 Tribe
With Tribe, Clarke, Drossopoulou, Noble, and Wrigstad

present a simplified version of the vc calculus [4] and allow
more flexible path-based types and avoid to add additional
conceptual overhead [13]. In contrast to vc surrounding in-
stances can not only be accessed by calling this.out, but en-
ables to use out also on instances of virtual classes. Also they
propose a more flexible way of referring to types of virtual
classes. In vc it is only allowed to refer to virtual classes
by an instance of their enclosing class. Tribe also allows
referencing by the type of the enclosing class. Referring to
the virtual class using the instance of the enclosing class is
more specialized. In an example where the family Graph con-
tains a virtual class Node, the natural subtype relation g.Node

≤ Graph.Node is valid. g.Node denotes an instance of Node
inside family g whereas Graph.Node denotes an instance of
Node in some graph family. Scala supports projection types
(Graph#Node) which can be used for the second case. Call-
ing out (or outer in our transformation) on instances and not
only on this could possibly be modeled using vals that refer
to the enclosing instance in our virtual trait representation.
Therefore some of the proposed features may be added to
virtual traits in future work.

6. SUMMARY
In this paper we present virtual traits. A virtual trait can

be overridden in a subtrait of its outer family trait and there-
fore refine its implementation. Virtual traits can be encoded
on top of existing Scala features. We presented an encoding
and showed that this encoding can be implemented on top
of existing Scala features. The implementation uses anno-
tation macros that provide a flexible way of realizing the
proposed transformation. We will continue to work towards
integrating virtual traits into Scala based on the formaliza-
tion in [4].

References
[1] Martin Odersky and Matthias Zenger. “Scalable Com-

ponent Abstractions”. In: OOPSLA. ACM, 2005, pp. 41–
57.

[2] Erik Ernst. “The expression problem, Scandinavian
style”. In: ON MECHANISMS FOR SPECIALIZA-
TION (2004), p. 27.

[3] Vaidas Gasiunas and Ivica Aracic. “Dungeon: A Case
Study of Feature-Oriented Programming with Virtual
Classes”. In: Proceedings of the 2nd Workshop on Aspect-
Oriented Product Line Engineering. Oct. 2007.

[4] Erik Ernst, Klaus Ostermann, and William R. Cook.
“A Virtual Class Calculus”. In: SIGPLAN Not. 41.1
(2006).

[5] Eugene Burmako.“Scala Macros: Let Our Powers Com-
bine!: On How Rich Syntax and Static Types Work
with Metaprogramming”. In: SCALA ’13. ACM, 2013,
3:1–3:10.

[6] The Scala Language Specification Version 2.9. url:
http : / / www . scala - lang . org / files / archive /

nightly/pdfs/ScalaReference.pdf.

[7] Manuel Weiel. Virtual classes for Scala implemented
as annotation macro. url: https : / / github . com /

xmanu/scala-virtual-classes-annotation-macros.

[8] O. L. Madsen and B. Moller-Pedersen.“Virtual Classes:
A Powerful Mechanism in Object-oriented Program-
ming”. In: SIGPLAN Not. 24.10 (1989).

[9] Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger
Møller-Pedersen, and Kristen Nygaard. “The BETA
programming language”. In: DAIMI Report Series 16
(1987).

[10] Erik Ernst. “gbeta-a language with virtual attributes,
Block Structure, and Propagating, Dynamic Inheri-
tance”. In: DAIMI Report Series 29.549 (2000).

[11] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus
Ostermann. “An Overview of CaesarJ”. In: Transac-
tions on Aspect-Oriented Software Development I. Lec-
ture Notes in Computer Science. Springer Berlin Hei-
delberg, 2006, pp. 135–173.

[12] CaesarJ language specification. url: http : / / www .

caesarj.org/index.php/CJLS/Classes.

[13] Dave Clarke, Sophia Drossopoulou, James Noble, and
Tobias Wrigstad. “Tribe: a simple virtual class calcu-
lus”. In: Proceedings of the 6th international conference
on Aspect-oriented software development. ACM. 2007,
pp. 121–134.

75

